Proving Innermost Normalisation Automatically
نویسندگان
چکیده
We present a technique to prove innermost normalisation of term rewriting systems (TRSs) automatically. In contrast to previous methods, our technique is able to prove innermost normalisation of TRSs that are not terminating. Our technique can also be used for termination proofs of all TRSs where innermost normalisation implies termination, such as non-overlapping TRSs or locally con uent overlay systems. In this way, termination of many (also non-simply terminating) TRSs can be veri ed automatically.
منابع مشابه
Termination of term rewriting using dependency pairs
We present techniques to prove termination and innermost termination of term rewriting systems automatically. In contrast to previous approaches, we do not compare left-and right-hand sides of rewrite rules, but introduce the notion of dependency pairs to compare left-hand sides with special subterms of the right-hand sides. This results in a technique which allows to apply existing methods for...
متن کاملLoops under Strategies
While there are many approaches for automatically proving termination of term rewrite systems, up to now there exist only few techniques to disprove their termination automatically. Almost all of these techniques try to find loops, where the existence of a loop implies non-termination of the rewrite system. However, most programming languages use specific evaluation strategies, whereas loop det...
متن کاملLoops under Strategies ... Continued
While there are many approaches for automatically proving termination of term rewrite systems, up to now there exist only few techniques to disprove their termination automatically. Almost all of these techniques try to find loops, where the existence of a loop implies non-termination of the rewrite system. However, most programming languages use specific evaluation strategies, whereas loop det...
متن کاملOrderings for Innermost Termination
This paper shows that the suitable orderings for proving innermost termination are characterized by the innermost parallel monotonicity , IP-monotonicity for short. This property may lead to several innermost-specific orderings. Here, an IP-monotonic version of the Recursive Path Ordering is presented. This variant can be used (directly or as ingredient of the Dependency Pairs method) for provi...
متن کاملTermination of Innermost Context-Sensitive Rewriting Using Dependency Pairs
Innermost context-sensitive rewriting has been proved useful for modeling computations of programs of algebraic languages like Maude, OBJ, etc. Furthermore, innermost termination of rewriting is often easier to prove than termination. Thus, under appropriate conditions, a useful strategy for proving termination of rewriting is trying to prove termination of innermost rewriting. This phenomenon ...
متن کامل